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1 Introduction

In this MTH 501 project, we present results from the article “Free Differential Calculus I:

Derivation in the Free Group Ring” by Ralph H. Fox [1]. This work introduces a group ring

generalization of the classical differential calculus of functions of one or more real variables.

1.1 History and Context

In 1952, Ralph H. Fox was inspired by his research in topological classifications, and specif-

ically by his work with the Alexander polynomial, to formulate a more general theory of

differentiation that would be applicable to more general algebraic objects than real-valued

functions.

Specifically, in the paper under consideration [1], Fox presented his theory of free differen-

tial calculus (now called the Fox Calculus in his honor), in which the theory of differentiation

is generalized to the case where the objects being differentiated are elements of an abstract

group ring ZG over an arbitrary multiplicative group G with respect to the ring Z of in-

tegers. In this more general setting, a number of familiar and basic properties regarding

differentiation are established, and the results highlight many similarities with the classical

case. Specific results are applied to the case of a free group ring.

Our aim in this project is to present the results found in the original article of Fox.

Specifically, we aim to fill in the many details and calculations of the paper that are left

to the reader. Furthermore, we hope to increase the readability by offering a number of

running examples to illustrate the results and proof methods wherever possible.

1.2 Organization of Topics

The content of this project is organized as follows. Chapter 1 contains a brief introduction

to the topic of group rings, in order to offer a bit of historical and mathematical context

for this work. Chapter 2 presents the basic properties of group rings, with an emphasis on

homomorphisms and derivations. In Chapter 3, we focus in on the specific case of derivations

in a free group ring. Finally, in Chapter 4 we conclude with a number of observations and
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possible directions for further research.

2 Basic Properties of Group Rings

In this section, we present a number of basic results regarding group rings ZG for a mul-

tiplicative group G with respect to the ring Z of integers. Many of the concepts will be

familiar to students of an introductory course in abstract algebra, but if more context is

desired, we refer the interested reader to the classic textbook by Pinter [4]. Other references

for algebraic topics that may be a bit more advanced include the textbooks by Fraleigh [2]

and Hungerford [3].

Our first results simply consider the various relationships that exist between the group

homomorphisms defined on G and the ring homomorphisms defined on the group ring ZG.

After that, we will briefly explore the relationships between normal subgroups of G and two-

sided ideals of ZG. At that point, we will discuss a particularly important homomorphism

for the group ring known as a retraction. Finally, we will introduce the main topic for

consideration in this project, the concept of a derivation in a group ring. Each of these

topics will be illustrated with examples.

2.1 Running Example D6

Recall that the dihedral group D6 denotes the group of all 6 symmetries of an equilateral

triangle. This group D6 belongs to the well-known family of dihedral groups, where D2n

denotes the symmetry group of a regular n-sided polygon.

The group D6 has generators R and F , where R denotes a 120◦ clockwise rotation and F

denotes a reflection through a vertical axis. We can illustrate these group elements visually

as symmetries of a triangle as follows.

• The generator R rotates the triangle clockwise by 120◦:
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• The generator F reflects the triangle across a vertical axis

The full operation table (the Cayley table for composition) for the group D6 can be

easily computed by hand, and the result is given as follows:

◦ I R R2 F FR FR2

I I R R2 F FR FR2

R R R2 I FR2 F FR
R2 R2 I R FR FR2 F
F F FR FR2 I R R2

FR FR FR2 F R2 I R
FR2 FR2 F FR R R2 I

Using this example, we will illustrate many of the concepts and results that follow. We

begin in the next section with a consideration of homomorphisms.

2.2 Homomorphisms of Groups and Rings

Let G be any multiplicative group. Recall that we can form the associated group ring ZG

with respect to the ring Z of integers. Each element of r ∈ ZG is expressible as a sum

r =
∑
g∈G

agg,

where every coefficient ag is an integer, and these coefficients are zero for all but finitely

many g ∈ G. Addition and multiplication in ZG are defined by

∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g (1)
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and ∑
g∈G

agg

 ·

(∑
h∈G

bhh

)
=
∑
g,h∈G

(agbh)gh. (2)

Each element a ∈ Z is identified with the element a · 1g ∈ ZG and each element g ∈ G is

identified with the element 1 · g ∈ ZG. So, in this way, both Z and G can easily be regarded

as subsets of the group ring ZG.

Example 1 (The group ring ZG for the dihedral group G = D6.) Three examples of the

elements of the group ring ZD6 are given below:

2R+R2 − 3F,

3R+ 2F − 5FR2 + 3I, and

−R2 − F + 2FR+ 5FR2.

As an example of addition in the group ring ZG, we have:

(2R+R2 − 3F ) + (3R+ 2F − 5FR2 + 3I) = 5R+R2 − F − 5FR2 + 3I.

As an example of multiplication in the group ring ZG, we have:

(2R+R2 − 3F ) · (3R+ 2F − 5FR2 + 3I) = 6R2 + 4RF − 10RFR2 + 6R+ 3R3 + 2R2F −

5R2FR2 + 3R2 − 9FR− 6F 2 + 15F 2R2 − 9F

= 6R2 + 4FR2 − 10FR+ 6R+ 3I + 2FR−

5F + 3R2 − 9FR− 6I + 15R2 − 9F

= 24R2 + 4FR2 − 17FR+ 6R− 3I − 14F.

Notice how, in the calculation above, we simply expanded the product using the distributive

property, and we simplified the terms using the Cayley table for the group. Finally, we
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collected like-terms to simplify the result. □

Now we consider the concept of homomorphisms. Recall these are functions defined on

a group or a ring that respect the appropriate operations [4].

Let ψ be a homomorphism from a group G into a group H. We denote by ψ′ : ZG → ZH

the linear extension of the group homomorphism ψ to elements of the group ring. In

other words, ψ′ is defined so that

∑
g∈G

agg

ψ′

=
∑
g∈G

agg
ψ. (3)

Note that ψ′ leaves fixed each element of Z.

Example 2 (Linear Extensions) Referring to Example 1, we now consider an example of

a homomorphism from ψ : D6 → Z2. Let ψ(R) = [0]2 and ψ(F ) = [1]2. These two values

actually determine a unique homomorphism from D6 to Z2. Moreover, this homomorphism

extends linearly to a unique homomorphism ψ′ defined on the group ring ZD6. Indeed, to

illustrate (3), note that ψ(FR2) = [1]2 + [0]2 + [0]2 = [1]2. So

(3R+ 2F − 5FR2 + 3I)ψ ′ = (3R)ψ ′ + (2F )ψ ′ − (5FR2)ψ ′ + (3I)ψ ′

= 3(R)ψ + 2(F )ψ − 5(FR2)ψ + 3(I)ψ

= 3 · [0]2 + 2 · [1]2 − 5 · [1]2 + 3 · [0]2

= 6 · [0]2 − 3 · [1]2 □

In the next lemma, we justify such computations by verifying that this rule of linear

extension, given in (3), always gives a ring homomorphism.

Lemma 1 Let ψ be any homomorphism ψ of a group G into a group H. Then, by linear

extension as defined in (3), the map ψ induces a ring-homomorphism ψ′ of the group ring

ZG into the group ring ZH.

Proof Let ψ denote any homomorphism of a group G into a group H.
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By (3), we begin with addition and argue as follows.

∑
g∈G

agg +
∑
g∈G

bgg

ψ′

=

∑
g∈G

(ag + bg)g

ψ′

=
∑
g∈G

(ag + bg)g
ψ

=
∑
g∈G

(agg
ψ + bgg

ψ)

=
∑
g∈G

agg
ψ +

∑
g∈G

bgg
ψ

=

∑
g∈G

agg

ψ′

+

∑
g∈G

bgg

ψ′

.

In the above deduction, we see that the map ψ′ as defined does indeed respect addition in

the group rings. Next we consider multiplication.

∑
g∈G

agg ·
∑
h∈G

bhh

ψ′

=

 ∑
g,h∈G

(agbh)gh

ψ′

=
∑
g,h∈G

(agbh)(gh)
ψ

=
∑
g,h∈G

(agbh)g
ψhψ

=
∑
g∈G

agg
ψ ·
∑
h∈G

bhh
ψ

=

∑
g∈G

agg

ψ′

·

(∑
h∈G

bhh

)ψ′

.

As the above deduction shows, the map ψ′ as defined does indeed respect multiplication in

the group rings. The result follows. □

Remark 1 Each normal subgroup N of a group G can be associated with a both-sided ideal

ℜN in the group ring ZG. Specifically, we let ℜN be the kernel of the ring homomorphism

associated with the natural (group) homomorphism G→ G/N. □
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In the next section, we will further explore this use of homomorphism kernels.

2.3 Normal Subgroups and Ideals

The kernel of a group homomorphism ψ : G→ H is, by definition, the normal subgroup N

consisting of those elements of G that are mapped by ψ to the identity element 1 of H. The

kernel of a ring homomorphism ψ′ is the both-sided ideal ℜ consisting of those elements of

ZG that are mapped by ψ′ to the zero element 0 of ZH. Recall that we have associated a

ring homomorphism ϕ′ with each group homomorphism ϕ. In this way, a both-sided ideal

ℜ is made to correspond to each normal subgroup N .

Conversely, Lemma 2 below will show that each both-sided ideal ℜ in ZG determines

a normal subgroup of G. Specifically, we can associate with ℜ the subgroup consisting of

those elements of G that are mapped to 1 by the ring homomorphism ZG→ ZG/ℜ.

Subsequently, in Lemma 3, we will see that the ideal ℜ that corresponds to a given

normal subgroup N does, in turn, determine N . And in fact, ℜ is the smallest ideal of ZG

that determines N .

Lemma 2 Each both-sided ideal ℜ in a group ring ZG determines a normal subgroup N of

the group G such that

N = {gi ∈ G |ϕ(1 · gi) = 1ZG/ℜ}

where ϕ denotes the natural homomorphism ZG→ ZG/ℜ.

Proof Since the identity of G maps to 1ZG/ℜ, we know that N is non-empty. It remains

to check closure, inverses, and normality.

First we consider closure. Let gk, gl ∈ N . Then, ϕ(1 · gk) = ϕ(1 · gl) = 1ZG/ℜ. So it
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follows that

ϕ(1 · (gk · gl)) = ϕ((1 · gk) · (1 · gl))

= ϕ(1 · gk) · ϕ(1 · gl)

= 1ZG/ℜ · 1ZG/ℜ

= 1ZG/ℜ.

Therefore, we can conclude that gk · gl ∈ N , and closure holds.

Next we consider inverses. Let gk ∈ N , so that ϕ(1 · gk) = 1ZG/ℜ. Then

1ZG/ℜ = ϕ(1 · 1g)

= ϕ(1 · (gk · gk−1))

= ϕ((1 · gk) · (1 · gk−1))

= 1ZG/ℜ · ϕ(1 · gk−1).

It follows that ϕ(1 · gk−1) = 1ZG/ℜ. Therefore, g
−1
k ∈ N , and N has inverses.

Finally we consider normality. Let gi ∈ N , so that ϕ(1 · gi) = 1ZG/ℜ. Then for any

g ∈ G, we have

ϕ(1 · (g · gi · g−1)) = ϕ(1 · g) · ϕ(1 · gi) · ϕ(1 · g−1)

= ϕ(1 · g) · 1ZG/ℜ · ϕ(1 · g−1)

= ϕ(1 · g) · ϕ(1 · g−1)

= ϕ(1 · (g · g−1))

= ϕ(1 · 1g)

= 1ZG/ℜ.

Therefore, g ·N · g−1 ⊂ N and N is a normal subgroup of G. □

To illustrate the result above, we return to our example.
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Example 3 (Normal Subgroup from Ideal) Recall the ring homomorphism ϕ′ : ZD6 → ZZ2

from Example 2. Then for any integers a, b, c, d, e, f we have

(aI + bR+ cR2 + dF + eFR+ fFR2)ϕ
′
= (a+ b+ c)[0]2 + (d+ e+ f)[1]2.

The 0 element in ZZ2 is 0 · [0]2 + 0 · [1]2, so the kernel of ϕ′ is the both-sided ideal

ℜ = {aI + bR+ cR2 + dF + eFR+ fFR2 | a+ b+ c = 0, d+ e+ f = 0}.

We now consider congruence mod ℜ. For example, the element below,

2I − 3R+ 4R2 − F + 3FR− 2FR2,

which is an element in the group ring ZD6, corresponds with any of the expressions below

3I + ℜ, 3R+ ℜ, or 3R2 + ℜ

in the quotient ring ZD6/ℜ. Similarly, since 1ZD6/ℜ = I+ℜ, it follows that the multiplicative

element of the quotient ring can be represented by any expression of the form

aI + bR+ cR2 + dF + eFR+ fFR2 + ℜ

where

a+ b+ c = 1 and d+ e+ f = 0.

This implies that {I,R,R2} are the elements of D6 that are mapped into 1ZD6/ℜ by the ring

homomorphism ZD6 → ZD6/ℜ. Therefore, the ideal ℜ corresponds to the normal subgroup

{I,R,R2} of D6. □

The subgroup N and the ideal ℜn are closely related, as we now show.

Lemma 3 Suppose ℜN is the ideal associated with a normal subgroup N of a group G (as

described in Remark 1). Then ℜN is the smallest ideal of ZG that determines N .
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Proof First we observe that if N ′ and N are any normal subgroups of G with N ′ ⊆ N ,

then the associated ideals ℜ′ and ℜ also satisfy ℜ′ ⊆ ℜ.

So now, let ℜ = ℜN be the ideal associated with N and suppose an ideal ℜ′ ⊆ ℜ

determines N ′ = N . Then N ⊆ N ′, so ℜ ⊆ ℜ′, and therefore ℜ = ℜ′. □

In our next lemma, we consider a relationship between a set of generators of a normal

subgroup N of a group G and a set of generators of the associated ideal ℜN in the group

ring ZG.

Lemma 4 Suppose a normal subgroup N of a group G is generated by the elements of a

set S = {nj | j ∈ J }. Then the set Ŝ = {nj − 1 | j ∈ J } generates the associated ideal ℜN

in the group ring ZG.

Proof Suppose that N ⊴ G, and let S be a set of generators as stated above. Let ϕ

denote the natural homomorphism, mapping each element g ∈ G to the coset gN in the

quotient group G/N . Recall that the associated ring homomorphism ϕ′ maps each element∑
agg ∈ ZG to the element

∑
agg

ϕ ∈ Z(G/N).

Fix any
∑
agg ∈ ℜN . Recall that ℜN = kerϕ′, so

∑
agg

ϕ = 0. Notice that, for any

h ∈ G/N , we have
∑′

ag = 0, where the summation
∑′

extends over g such that gϕ = h.

Fix any h ∈ G/N and any g0 ∈ G such that gϕ0 = h. Note that if gϕ = h, then gg−1
0 ∈ N .

Furthermore,

∑′
agg =

∑′
ag(gg

−1
0 − 1)g0 +

∑′
agg0

=
∑′

ag(gg
−1
0 − 1)g0.

It follows that
∑′

agg (and thus also
∑
agg) is a linear combination of elements of the form

n − 1, where n ∈ N . To see that each element of the form n − 1, where n ∈ N , is a linear
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combination of elements of the form nj − 1 ∈ Ŝ, we observe the identities below:

n−1 − 1 = −n−1(n− 1)

nn′ − 1 = (n− 1) + n(n′ − 1)

gng−1 − 1 = g(n− 1)g−1,

and the result follows. □

In the next section, we consider a particular homomorphism used in group rings.

2.4 Retractions in Group Rings

We begin with a definition.

Definition 1 (Retraction in a group ring ZG) Let G denote any (multiplicative) group.

The retraction ◦ of ZG upon Z is the ring homomorphism induced by the trivial group

homomorphism o : G→ {1}. In other words:

(
∑

agg)
◦ =

∑
agg

◦ =
∑

ag,

so that every element
∑
agg of ZG is mapped by ◦ into its coefficient sum. □

The kernel of the ring-homomorphism ◦ consists of all elements of coefficient sum zero.

This kernel will be called the fundamental ideal of ZG.

Example 4 (Example of retraction) Let us return to our group G = D6. Let
◦ denote the

retraction of ZG upon Z. Then

(3R+ 2F − FR+ 4FR2)◦ = 3R◦ + 2F ◦ − (FR)◦ + 4(FR2)◦

= 3 + 2− 1 + 4

= 8.

As this example suggests, it is a trivial matter to verify that ◦ is a ring homomorphism. □
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2.5 Derivations in Group Rings

In this section we introduce the central concept of this project, a derivation in a group ring.

Definition 2 (Derivations in a group ring ZG) A derivation in a group ring ZG is any

mapping D : ZG→ ZG that satisfies the following:

D(u+ v) = Du+Dv (4)

D(u · v) = Du · v◦ + u ·Dv, (5)

for all u, v ∈ ZG, where ◦ denotes the retraction of ZG upon Z. □

Example 5 (Examples of derivations) Each of the five maps defined below is an example

of a derivation on ZD6:

D1(R) = I −R2 + FR− FR2, D1(F ) = 0

D2(R) = R−R2 − F + FR, D2(F ) = 0

D3(R) = −F + FR2, D3(F ) = I − F

D4(R) = F − FR, D4(F ) = R− FR

D5(R) = FR− FR2, D5(F ) = R2 − FR2.

Indeed, using (4) and (5) above, it is not difficult to show that any derivation of ZD6 must

be a linear combination of these. □

We will use the derivation D3 from above to illustrate several results, so it will be

convenient to determine its action on all six elements of D6.

Example 6 (Complete action of derivation D3 on D6) Using equations (4) and (5) from
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above, we find that:

D3(I) = 0,

D3(R) = −F + FR2,

D3(R
2) = D3(R) +RD3(R)

= F + FR2 +R · (−F + FR2)

= −F + FR,

D3(F ) = I − F,

D3(FR) = D3(F ) + FD3(R)

= I − F + F · (−F + FR2)

= −F +R2,

D3(FR
2) = D3(F ) + FD3(R

2)

= I − F + F · (−F + FR)

= −F +R.

The action on any element of the group ring is now easily found by linearity. □

We now list a number of consequences of our definition of derivation.

Lemma 5 The following properties of any derivation D on a group ring ZG are implied by

equations (4) and (5):

D(gh) = Dg + gDh (g, h ∈ G), (6)

Da = 0 (a ∈ Z), (7)

D(g−1) = −g−1Dg (g ∈ G). (8)

Proof To see (6), we begin by observing that h◦ = 1. Now we argue that

D(gh) = Dg · h◦ + gDh = Dg + gDh.
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Next we consider (7). Note that a ∈ Z is identified with the element a · 1g ∈ ZG. Then

D(1) = 0, since

D(1) = D(1 · 1)

= D(1 · 1g) · (1 · 1g)◦ + (1 · 1g) ·D(1 · 1g)

= D(1 · 1g) +D(1 · 1g)

= D(1) +D(1).

It now follows, by a simple induction, that Da = 0.

Finally, we consider (8). By the result above,

0 = D(1)

= D(g−1 · g)

= D(g−1) + g−1Dg.

It now follows that D(g−1) = −g−1Dg. □

Next we return to our running example of ZD6 and we use it to illustrate the rule for

applying a derivation to the inverse of a group element.

Example 7 (Applying rule (8) with D3 in ZD6.) When we apply (8) to some elements of

D6, we see that

D3(R
−1) = −R−1D3(R)

= −R2(−F + FR2)

= R2F −R2FR2

= FR− F

= D3(R
2).
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This agrees with our earlier result in Example 6. Similarly,

D3(F
−1) = −F−1D3(F )

= −F (I − F )

= −F + I

= D3(F ).

Again, the above calculation confirms our earlier results in Example 6. □

In our next lemma, we extend the derivation rules to arbitrary sums and products.

Lemma 6 Let D be any derivation of a group ring ZG. Then for any
∑
agg ∈ ZG, we

have

D
(∑

agg
)
=
∑

agDg. (9)

Furthermore, for any u1, u2, . . . , ul ∈ ZG, we have

D(u1 · u2 · · ·ul) =
l∑
i=1

u1 · · ·ui−1 ·Dui · u◦i+1 · · ·u◦l . (10)

Proof To see (9), we simply note that, by (4), we have

D(
∑

agg) =
∑

D(agg) =
∑

agDg,

as desired. To prove (10), we proceed by induction on l. Note that

D(u1 · u2) = Du1 · u◦2 + u1 ·Du2,

so the base case holds. Now assume that

D(u1 · u2 · · ·ul−1) =

l−1∑
i=1

u1 · · ·ui−1 ·Dui · u◦i+1 · · ·u◦l−1.
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Then we argue that

D(u1 · u2 · · ·ul) = D(u1 · u2 · · ·ul−1) · ul + (u1 · u2 · · ·ul−1) ·Dul

= (

l−1∑
i=1

u1 · · ·ui−1 ·Dui · u◦i+1 · · ·u◦l−1) · ul + (u1 · u2 · · ·ul−1) ·Dul

=

l∑
i=1

u1 · · ·ui−1 ·Dui · u◦i+1 · · ·u◦l .

The result follows. □

Based on the results described above, the set of derivations in a group ring ZG form a

right ZG-module, where addition is defined by

(D1 +D2)u = D1u+D2u

and where right-multiplication by an element v of ZG is defined by

(D · v)(u) = Du · v.

In the next section, we apply these results to the special case of a free group ring.

3 Derivations in a free group ring

We begin with some terminology.

3.1 Definitions for Free Group Rings

To define a free group X, we begin by fixing a given set of generators S = {xj | j ∈ J }.

Note that the set S of generators need not be enumerable. An element of X is an equiva-

lence class u of words from S, represented by a unique reduced word, which is an expression

of the form
∏l
k=1 x

ϵk
jk

such that ϵk = ±1 and ϵk + ϵk+1 ̸= 0 if jk = jk+1. The length of u

means the length of the representative reduced word. The identity element 1 is represented

by the empty word and is said to be of length 0. The inverse u−1 of u is represented by
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the reduced word
∏l
k=1 x

−ϵl+1−k

jl+1−k
.

An element of the free group ring ZX, defined over the free group X, is called a free

polynomial f(x) and has the form

f(x) =
∑

auu, (u ∈ X, au ∈ Z)

where almost all au are equal to zero. For any group G, a homomorphism ϕ : X → G that

maps (x1, x2, · · · ) into (xϕ1 , x
ϕ
2 , · · · ) gives rise to an induced ring homomorphism ϕ′ : ZX →

ZG that maps a free polynomial f(x) =
∑
auu into

f(x)ϕ
′
= f(xϕ) =

∑
auu

ϕ.

The associated retraction homomorphism ◦ : ZX → Z maps a free polynomial f(x) to

the corresponding coefficient sum. In other words, f(x)◦ =
∑
au = f(1). Recall that the

fundamental ideal of ZX consists of those polynomials f(x) for which f(1) = 0.

3.2 Derivatives with Respect to Generators

The next theorem shows that any derivation can be realized as a linear combination of the

spanning set – namely, the derivatives with respect to the generators.

Theorem 1 Assume {xj | j ∈ J } is the set of generators for a free group X. To each

generator xj, there corresponds a derivation f(x) → ∂f(x)/∂xj, called the derivative with

respect to xj, which has the property

∂xk
∂xj

= δj,k. (11)

Furthermore, for any given elements h1(x), h2(x), · · · of ZX, there is exactly one deriva-

tion f(x) → f ′(x) that respectively maps the generators x1, x2, · · · into these elements
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h1(x), h2(x), · · · of ZX. It is given by the formula

f ′(x) =
∑ ∂f(x)

∂xj
· hj(x) (12)

Proof. For each index j and element u of X, define ⟨j, u⟩ = 1 if xj is an initial segment

of the reduced word representing u, and ⟨j, u⟩ = 0 otherwise. Extend this definition linearly

to ZX such that

⟨j, f(x)⟩ = ⟨j,
∑

auu⟩ =
∑

au⟨j, u⟩.

For each index j, each element w of X, and each free polynomial f(x), define

⟨j, w, f(x)⟩ = ⟨j, w−1f(x)⟩ − ⟨j, w−1⟩f(1).

Then for any u ∈ X, we have

⟨j, w, u⟩ = ⟨j, w−1u⟩ − ⟨j, w−1⟩ = 0

if w is not an initial segment of u, since xj is an initial segment of w−1u if and only if xj is

an initial segment of w−1. It follows that, for given j and f(x), the integer

⟨j, w, f(x)⟩ = ⟨j, w,
∑

auu⟩ =
∑

au⟨j, w, u⟩ = 0

for all but a finite number of elements w of X. The derivative of f(x) with respect to xj is

now defined to be the finite sum

∂f(x)

∂xj
=
∑
w∈X

⟨j, w, f(x)⟩w.

By linearity, it is clear that (4) is satisfied, and it is sufficient to prove the special case (6)

20



of (5). Let u, v ∈ X. Then

∂(uv)

∂xj
=

∑
w

(⟨j, w−1uv⟩ − ⟨j, w−1⟩)w

=
∑
w

(⟨j, w−1u⟩ − ⟨j, w−1⟩)w +
∑
w

(⟨j, w−1uv⟩ − ⟨j, w−1u⟩)w

=
∑
w

(⟨j, w−1u⟩ − ⟨j, w−1⟩)w + u
∑
t

(⟨j, t−1v⟩ − ⟨j, t−1⟩)t

=
∂u

∂xj
+ u

∂v

∂xj
.

To prove (11), note that the only initial segments of xk are 1 and xk, thus

∂xk
∂xj

= ⟨j, 1, xk⟩+ ⟨j, xk, xk⟩xk

= (⟨j, xk⟩ − ⟨j, 1⟩) + (⟨j, 1⟩ − ⟨j, x−1
k ⟩)xk

= (δjk − 0) + (0− 0)xk.

To prove (12), note that ∂f(x)/∂xj vanishes for all but a finite number of indices j.

Thus, the sum ∑
j

∂f(x)

∂xj
· hj(x)

is a finite sum. Since the derivations in ZX form a right ZX-module, a map that sends f(x)

to
∑

(∂f(x)/∂xj) · hj(x) is a derivation and, by construction, it sends xj to hj(x) for each

index j. Conversely, if f(x) → f ′(x) is any derivation that respectively maps x1, x2, · · · into

h1(x), h2(x), · · · , then

f(x) → f ′(x)−
∑
j

(∂f(x)/∂xj) · hj(x)

is a derivation mapping each xj into 0. It therefore also maps each x−1
j into −x−1

j · 0, which

is 0. From (4) and (5) we conclude that every element of ZX is mapped into 0. Thus,

f ′(x) =
∑
j(∂f(x)/∂xj) · hj(x), as desired. □

In the next lemma, we highlight a derivation that possesses a particularly simple form.
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Lemma 7 Assume {xj | j ∈ J } is the set of generators for a free group X. The function

D, that maps f(x) 7→ f(x)−f(1), is a derivation on the free group ring ZX that respectively

maps xj into xj − 1 for each j ∈ J .

Proof. Let us show that the given map D satisfies (4) and (5). First, for any free

polynomials f(x) and g(x), we have

D(f(x) + g(x)) = f(x) + g(x)− f(1)− g(1)

= f(x)− f(1) + g(x)− g(1)

= D(f(x)) +D(g(x)),

so (4) clearly holds. And similarly,

D(f(x) · g(x)) = f(x)g(x)− f(1)g(1)

= f(x) · g(1)− f(1) · g(1) + f(x) · g(x)− f(x) · g(1)

= (f(x)− f(1)) · g(1) + f(x) · (g(x)− g(1))

= D(f(x)) · g(1) + f(x) ·D(g(x)).

So the condition (5) holds, as desired. □

To illustrate the spanning property of the set of derivations given in Example 5, we

consider the case of the derivation given in Lemma 7.

Example 8 (The derivation D for the case of ZD6.) The derivation D given in Lemma 7,

when applied to case of the group ring ZD6, satisfies

D(R) = R− I, and D(F ) = F − I.

As a result, the derivation D can be represented as −D1 +D2 −D3, a linear combination
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of the derivations in Example 5. To see why, note that (−D1 +D2 −D3)(R) evaluates to

−(I −R2 + FR− FR2) + (R−R2 − F + FR)− (−F + FR2),

which simplifies to R− I. And (−D1 +D2 −D3)(F ) = −0 + 0− (I − F ) = F − I. □

3.3 Calculating Derivatives with the Fundamental Formula

Using the result (12) from the previous section, we obtain a useful fact, known as the

fundamental formula:

f(x) = f(1) +
∑
j

∂f(x)

∂xj
· (xj − 1). (13)

This formula shows that any element f(x) of ZX can be explicitly recovered from f(1) and

from its derivatives ∂f(x)/∂xj for j ∈ J . In particular, any element u of the free group X

can be explicitly recovered from its derivatives ∂u/∂xj for j ∈ J .

Example 9 (The derivation D for the case of ZD6.) Let X be a free group generated by

{x1, x2, x3} and consider the free polynomial f(x) ∈ ZX given by

f(x) = 3x−1
2 x1x2 + 5x3x2x

−1
1 .

If we let D̂1 denote ∂/∂x1, then

∂f(x)/∂x1 = 3(D̂1x
−1
2 + x−1

2 D̂1(x1x2)) + 5(D̂1x3 + x3DD̂1(x2x
−1
1 ))

= 3(0 + x−1
2 D̂1(x1x2)) + 5(0 + x3D̂1(x2x

−1
1 ))

= 3x−1
2 (D̂1x1 + x1D̂1x2) + 5x3(D̂1x2 + x2D̂1x

−1
1 )

= 3x−1
2 + 5x3x2(−x−1

1 )

= 3x−1
2 − 5x3x2x

−1
1 .
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Likewise, if we let D̂2 denote ∂/∂x2, then

∂f(x)/∂x2 = 3(D̂2x
−1
2 + x−1

2 D̂2(x1x2)) + 5(D̂2x3 + x3D̂2(x2x
−1
1 ))

= 3(−x−1
2 D̂2x2 + x−1

2 D̂2(x1x2)) + 5(0 + x3D̂2(x2x
−1
1 ))

= 3x−1
2 (−1 + D̂2x1 + x1D̂2x2) + 5x3(D̂2x2 + x2D̂2x

−1
1 )

= −3x−1
2 + 3x−1

2 x1 + 5x3.

Finally, if we let D̂3 denote ∂/∂x3, then

∂f(x)/∂x3 = 3(D̂3x
−1
2 + x−1

2 D̂3(x1x2)) + 5(D̂3x3 + x3D̂3(x2x
−1
1 ))

= 3(0) + 5(1 + 0) = 5.

It now follows from (13) that

f(x) = (3x−1
2 − 5x3x2x

−1
1 )(x1 − 1) + (−3x−1

2 + 3x−1
2 x1 + 5x3)(x2 − 1) + 5(x3 − 1),

which indeed is easily verified, as desired. □

Another use for the fundamental formula (13) is that it allows us to easily calculate the

derivatives of a power of generator.

∂xpj/∂xj = (xpj − 1)/(xj − 1) =


1 + xj + · · ·+ xp−1

j if p ≥ 1

0 if p = 0

−xpj − xp+1
j − · · · − x−1

j if p ≤ −1.

(14)

This formula (14) and (10) combine to give us another practical rule. Write any u ∈ X

in the form u = u0x
p1
j u1x

p2
j · · ·uq−1x

pq
j uq where p1, · · · , pq are non-zero integers and where

the reduced words represented by u0, u1, · · · , uq do not involve the generator xj . Then we

get

∂u

∂xj
=

q∑
j=1

u0x
p1
j u1x

p2
j · · ·ui−1

xpij − 1

xj − 1
. (15)
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We conclude by considering an example to illustrate the use of this rule.

Example 10 (Derivation using the fundamental formula) For any integers m,n > 0 we

find that:

∂

∂x1
(xm1 x

n
2x

−m
1 x−n2 ) = (1 + x1 + · · ·+ xm−1

1 ) + xm1 x
n
2 (−x−m1 − x−m+1

1 − · · · − x−1
1 )

= (1− xm1 x
n
2x

−m
1 )(1 + x1 + · · ·+ xm−1

1 ).

In a similar manner, we can compute the derivative with respect to x2:

∂

∂x2
(xm1 x

n
2x

−m
1 x−n2 ) = xm1 (1 + x2 · · ·+ xn−1

2 ) + xm1 x
n
2x

−m
1 (−x−n2 − x−n+1

2 · · · − x−1
2 )

= (xm1 − xm1 x
n
2x

−m
1 x−n2 )(1 + x2 + · · ·+ xn−1

2 ).

Generally, using this approach is the easiest way to compute derivatives by hand.

4 Conclusion

In this paper, we demonstrated a group ring generalization of the classical differential cal-

culus of functions of one or more real variables.

Of particular interest to me was the interplay between homomorphisms and derivatives.

In the classical differential calculus of functions of one or more real variables, derivative is

defined at a point of its domain and not explicitly viewed as structural relation between the

function and its derivative function. However, in the Fox calculus, derivative is defined as a

homomorphism, a structure preserving mapping.

Further results beyond the scope of this project include chain rule of differentiation,

derivatives in a free group ring of higher order, and how derivatives in a free group ring

shows structures of the free group ring.

Another interesting thing to pursue further might be to explore the associated theory

of anti-derivatives. How can we define the anti-derivation in a group ring or free group

ring? What are the computational properties of anti-derivation? Can we also have various
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anti-derivation methods similar to the various methods of anti-derivation in the classical

integral calculus of functions of real variables?

For more information on these topics and more, the motivated reader may be interested

in exploring the resources listed in the references below.
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